skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhouri, Mohamed Aziz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physical parameterizations (or closures) are used as representations of unresolved subgrid processes within weather and global climate models or coarse-scale turbulent models, whose resolutions are too coarse to resolve small-scale processes. These parameterizations are typically grounded on physically based, yet empirical, representations of the underlying small-scale processes. Machine learning-based parameterizations have recently been proposed as an alternative solution and have shown great promise to reduce uncertainties associated with the parameterization of small-scale processes. Yet, those approaches still show some important mismatches that are often attributed to the stochasticity of the considered process. This stochasticity can be due to coarse temporal resolution, unresolved variables, or simply to the inherent chaotic nature of the process. To address these issues, we propose a new type of parameterization (closure), which is built using memory-based neural networks, to account for the non-instantaneous response of the closure and to enhance its stability and prediction accuracy. We apply the proposed memory-based parameterization, with differentiable solver, to the Lorenz ’96 model in the presence of a coarse temporal resolution and show its capacity to predict skillful forecasts over a long time horizon of the resolved variables compared to instantaneous parameterizations. This approach paves the way for the use of memory-based parameterizations for closure problems. 
    more » « less